Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Waste Manag Res ; : 734242X241231395, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38549504

RESUMO

This study constitutes a comprehensive investigation centred on comprehending the behaviour and characteristics of recycled polyvinyl chloride (PVC) powders. The overarching objective is to successfully conclude the initial research phase, during which PVC-coated fabric offcuts undergo a transformation into PVC powder while achieving complete separation from polyethylene terephthalate fibres. The study entails a qualitative description of the morphology of PVC powder particles, employing an optical microscope to distinguish the diverse shapes exhibited by these particles. The optical microscope observations of PVC powder reveal a distinct array of non-spherical particles characterized by flat, elongated shapes. These high-magnification images unveil the intricate morphological features of the particles, highlighting their irregular shapes. Subsequently, a quantitative analysis of PVC particle size distribution is performed, comparing results from optical microscopy with those obtained through mechanical sieving. The qualitative and quantitative findings obtained provide robust evidence supporting the correlation and confirm that most particles are smaller than 600 µm (93.6%) using an optical microscope and the sieving process (96.39%). The greatest fraction (83.44%) is in the size range between 200 and 600 µm. Assessing flowability, another significant aspect in the evaluation of powders, provides insights into its behaviour and interparticle interactions. The flowability results indicate a Compressibility Index of approximately 26.84%, which suggests poor flowability. This means that the powder is likely to encounter difficulties in flowing freely. This finding is in line with the Hausner ratio, which measures 1.37. This investigation of recycled PVC powder will offer insights into the potential applications and processing considerations of this powder. More concretely, the use of recycled PVC powder shows promise as a viable alternative to conventional PVC resin in plastisol formulations, offering the potential to maintain the properties of the final PVC product without adverse effects.

2.
J Environ Manage ; 351: 119926, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154226

RESUMO

This study investigates-for the first time-the synthesis of a novel Ca-rich biochar (N-Ca-B) and its potential use for phosphorus (P) recovery from both synthetic solutions (SS) and treated urban wastewater (TUW) in a continuous stirring tank reactor (CSTR) mode. The novel biochar was synthesized by pyrolysis at 900 °C of a mixture composed of three different materials: animal biomass (poultry manure; PM), lignocellulosic waste (date palm fronds; DPFs), and abundant mineral waste (waste marble powder; WMP). Characterization of N-Ca-B showed that it has good textural properties: well-developed porosity, and high specific surface area. Furthermore, high calcium hydroxide (Ca(OH)2) and calcium oxides (CaO) nanoparticle loads were observed on the biochar surface. The dynamic CSTR assays indicated that the P recovery efficiency mainly depended on the biochar mass, P influent concentration, and, especially, the Ca content of the feeding solution. Owing to its richness in Ca cations, TUW exhibited the highest adsorbed P amount (109.2 mg g-1), i.e., about 14% larger than the SS. P recovery occurs through precipitation as hydroxyapatite, surface complexation, and electrostatic interactions with positively charged biochar particles. In real-world scenarios, CSTR systems can be applied as a tertiary treatment step in existing wastewater treatment plants (WWTPs). Decanted P-loaded biochar can be used in agriculture as a slow-release fertilizer instead of commercial products.


Assuntos
Carbonato de Cálcio , Cálcio , Animais , Fósforo , Pós , Carvão Vegetal , Águas Residuárias
3.
Waste Manag Res ; : 734242X231188667, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37522156

RESUMO

Hydrogels based on natural polysaccharides have received special attention in the last decade due to their interesting features, such as availability, biocompatibility, biodegradability and safety. Such characteristics may make them sustainable and eco-friendly materials for water and wastewater treatment, meeting the concept of circular economy. In this study, a novel double-cross-linked alginate-based hydrogel has been successfully synthesized using epichlorhydrin and sodium trimetaphosphate (STMP) as cross-linker agents and then used for the removal of methylene blue (MB) dye under different operating conditions. The obtained hydrogel was deeply characterized by using various analytical techniques, namely Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy and differential scanning calorimetry. Experimental results showed that the synthesized double cross-linked hydrogel with relatively high STMP concentration (0.26 M) has promising structural and textural properties. This material exhibited excellent removal ability towards MB with a maximum adsorption capacity of about 992 mg/g for an initial pH of 10. The kinetic and isotherm modeling study revealed that the pseudo-second-order and Freundlich models fitted well the measured adsorption experimental data. The MB adsorption process onto the synthesized hydrogel is exothermic, feasible and spontaneous. It mainly includes electrostatic interaction and hydrogen bonds. These findings suggest that double-cross-linked alginate-based hydrogel can be considered as an attractive and potential adsorbent for an effective cationic dye removal from aqueous environments. The use of such a green adsorbent for the treatment of organic-pollutants-rich industrial wastewaters promotes sustainability and circular economy concepts.

4.
J Environ Manage ; 342: 118307, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37269723

RESUMO

Phosphorus (P) represents a major pollutant of water resources and at the same time a vital element for human and plants. P recovery from wastewaters and its reuse is a necessity in order to compensate the current important depletion of P natural reserves. The use of biochars for P recovery from wastewaters and their subsequent valorization in agriculture, instead of synthetic industrial fertilizers, promotes circular economy and sustainability concepts. However, P retention by pristine biochars is usually low and a modification step is always required to improve their P recovery efficiency. The pre- or post-treatment of biochars with metal salts seems to be one of the most efficient approaches. This review aims to summarize and discuss the most recent developments (from 2020- up to now) in: i) the role of the feedstock nature, the metal salt type, the pyrolysis conditions, and the experimental adsorption parameters on metallic-nanoparticles-loaded biochars properties and effectiveness in recovering P from aqueous solutions, as well as the dominant involved mechanisms, ii) the effect of the eluent solutions nature on the regeneration ability of P-loaded biochars, and iii) the practical challenges facing the upscaling of P-loaded biochars production and valorization in agriculture. This review shows that the synthesized biochars through slow pyrolysis at relatively high temperatures (up to 700-800 °C) of mixed biomasses with Ca- Mg-rich materials or impregnated biomasses with specific metals in order to from layered double hydroxides (LDHs) biochars composites exhibit interesting structural, textural and surface chemistry properties allowing high P recovery efficiency. Depending on the pyrolysis's and adsorption's experimental conditions, these modified biochars may recover P through combined mechanisms including mainly electrostatic attraction, ligand exchange, surface complexation, hydrogen bonding, and precipitation. Moreover, the P-loaded biochars can be used directly in agriculture or efficiently regenerated with alkaline solutions. Finally, this review emphasizes the challenges concerning the production and use of P-loaded biochars in a context of circular economy. They concern the optimization of P recovery process from wastewater in real-time scenarios, the reduction of energy-related biochars production costs and the intensification of communication/dissemination campaigns to all the concerned actors (i.e., farmers, consumers, stakeholders, and policymakers) on the benefits of P-loaded biochars reuse. We believe that this review is beneficial for new breakthroughs on the synthesis and green application of metallic-nanoparticles-loaded biochars.


Assuntos
Nanopartículas , Fósforo , Humanos , Águas Residuárias , Carvão Vegetal/química , Adsorção
5.
Sci Total Environ ; 871: 161959, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36739037

RESUMO

Tomato pomace was slowly pyrolyzed at 350 and 550 °C (under an N2 flow of 50 L/h) at a rate of 6 °C/min and a residence time of 1:30 h to produce two biochars named B350 and B550, respectively. In addition, the two biochars were chemically activated with ΚΟΗ (at a ratio of 1:10 w/v) at 800 °C to produce two new materials named BA350 and BA550. The four biochars produced were characterized physically and chemically (pH, yield, calorific value). They were also analyzed by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (B.E.T), elemental analysis (EA), and thermogravimetric analysis (TGA). The results showed that as the pyrolysis temperature increased (350 to 550 °C), the specific surface area (SSA) increased. The latter was also significantly increased by the activation process. EA showed a variation in the mineral content of the produced biochars, resulting in a different content of the biochars after activation. The parameters studied showed that biochars from tomato waste could be used as an organic amendment to improve soil fertility in agricultural. In addition, because of their ability to absorb water, they could be used as a water reservoir in soils in arid areas.

6.
Waste Manag Res ; 41(2): 251-263, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36690647

RESUMO

Humanity's three main components are energy, food and clothing. Each of us, individually and collectively, contributes to climate change and CO2 emissions, natural resource consumption, and social attitudes and behaviour. Global fashion trends are expected to increase in value from 1.5 trillion dollars in 2020 to around 2.25 trillion dollars by 2025, indicating that the fashion demand is on the rise. Due to climate change, soil and water scarcity, and a variety of other diseases, new natural resources must be developed from plastic fibres, natural colours must replace synthetic ones, water consumption must be reduced and the 'buy-and-throw-away philosophy' must be replaced with 'buy-less-and-these-are-needed' and incorporate the 12 'R' strategies to aid the transition to a circular economy. In the context of waste management as well as on the development of new strategy approach, the fashion industry requires a new business circular model and furthermore a new mindset.


Assuntos
Gerenciamento de Resíduos , Plásticos , Percepção
7.
J Environ Manage ; 318: 115562, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35764000

RESUMO

In this study, lead removal from aqueous solutions using biochar derived from olive mill solid and liquid wastes has been investigated by applying batch experiments and geochemical modelling. The batch adsorption experiments included the assessment of several key parameters such as the contact time (kinetic), initial concentration (isotherm), pH, adsorbent dose, and the presence of competitive cations, whilst the geochemical modelling focused on the involved adsorption mechanisms using the PHREEQC code. The kinetic studies showed that lead adsorption is a relatively fast process, where intraparticle diffusion is the rate-limiting step. Biochar dose, solution pH and the presence of competitive ions significantly affected the Pb adsorption effectiveness by the biochar. Especially the higher Pb removal percentages were observed in mono-elemental solutions with high biochar dose at mildly acidic solution pH values. The maximum Pb adsorption capacity of biochar was estimated as 40.8 mg g-1 which is higher than various biochars derived from sludge, lignocellulosic and animal biomasses. On the other hand, the geochemical modelling employing the PHREEQC code showed that ion exchange and Pb precipitation are the main reactions controlling its removal from aqueous solutions, whilst surface complexation is insignificant, mainly due to the low surface functional groups on the used biochar.


Assuntos
Olea , Poluentes Químicos da Água , Adsorção , Animais , Carvão Vegetal , Concentração de Íons de Hidrogênio , Cinética , Chumbo , Soluções , Água
8.
Chemosphere ; 293: 133567, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35026199

RESUMO

In order to set up a cost-efficient biorefinery in a Tunisian dairy industry, the production unit effluents are recovered. The main objective is to develop an optimum method for the production of bioethanol from whey. An energy analysis as well as environmental and economic analyses are performed for a bioethanol production plant. Four production scenarios are examined in order to determine the most provident as well as the less polluting ones. The process and cost models were developed using SuperPro Designer software which a simulation program that is able to estimate both process and economic parameters. This software uses energy and mass balances. The model can be used to assess the efficiency, the resources consumption, the profitability and the environmental impact of each scenario. The results demonstrate that the third scenario, in which a reverse osmosis procedure is added to concentrate the whey, a continuous stoichiometric reaction procedure is integrated to model the biotransformation in the fermenter and where streams are added in order to recycle the biomass, produces the highest amount of bioethanol with 1.65 MT/year but the second one (where no streams were added) is the most profitable one with revenues as high as 570 000 $/year. The corresponding cost of ethanol production is 0.271 US $ ethanol per liter. The net present value (NPV) and the return on investment (ROI) of each scenario are positive. Such result indicates that all these investments could be undertaken in order to find an eco-friendly issue for the dairy industry effluents. Cheese whey could serve as an alternative raw material for producing ethanol.


Assuntos
Queijo , Soro do Leite , Indústria de Laticínios , Etanol/metabolismo , Soro do Leite/metabolismo , Proteínas do Soro do Leite/metabolismo
9.
J Environ Manage ; 305: 114368, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34968937

RESUMO

During the last decade, biochars have been considered as attractive and eco-friendly materials with various applications including wastewater treatment, energy production and soil amendments. However, the important nitrogen losses during biochars production using the pyrolysis process have limited their potential use in agriculture as biofertilizer. Therefore, it seems necessary to enrich these biochars with nitrogen sources before their use in agricultural soils. This paper is the first comprehensive review on the assessment of biomass type and the biochars' properties effects on N recovery efficiency from aqueous solutions as well as its release and availability for plants when applying the N-enriched chars in soils. In particular, the N recovery efficiency by raw biochars versus the type of the raw feedstock is summarized. Then, correlations between the adsorption performance and the main physico-chemical properties are established. The main mechanisms involved during ammonium (NH4-N) and nitrates (NO3-N) recovery process are thoroughly discussed. A special attention is given to the assessment of the biochars physico-chemical modification impact on their N recovery capacities improvement. After that, the application of these N-enriched biochars in agriculture and their impacts on plants growth as well as methane and nitrous oxide greenhouse gas emissions reduction are also discussed. Finally, the main future development and challenges of biochars enrichment with N from wastewaters and their valorization as biofertilizers for plants growth and greenhouse gas (GHG) emissions reduction are provided. This systematic review is intended to promote the real application of biochars for nutrients recovery from wastewaters and their reuse as eco-friendly fertilizers.


Assuntos
Compostos de Amônio , Nitratos , Agricultura , Carvão Vegetal , Fertilizantes/análise , Solo , Águas Residuárias
10.
Sci Total Environ ; 755(Pt 1): 142531, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33035975

RESUMO

The olive oil industry is an important economic sector in Mediterranean countries. However, oil production is unfortunately accompanied by the generation of huge amounts of olive mill solid wastes (OMSW) and olive mill wastewater (OMWW). In the present study, a strategy is proposed for converting these olive mill wastes into biochar through pyrolysis, for their later use as an organic amendment in agriculture. Specifically, two biochars were prepared from the pyrolysis of OMSW at 500 °C, either alone or impregnated with OMWW (OMSW-B and I-OMSW-B). The characterization of the OMSW and I-OMSW samples and their derived biochars showed that the fixed carbon and ash contents in the feedstocks increased by 38% and 11% respectively for OMSW-B, and by 37% and 12% respectively for I-OMSW-B. Interestingly, the impregnation process significantly increased Na, P, K, Ca and Fe contents in the produced biochars. The effect of OMSW-B and I-OMSW-B amendments at different application dose (1%, 2.5% and 5% wt/wt) on the enzymatic activity of an agricultural soil was performed at laboratory scale with a pot test. The experimental results showed that phosphatase and urease activity increased with biochar application rate; amendment with I-OMSW-B at 1%, 2.5% and 5% enhanced the phosphatase activity by 63%, 142% and 285% and urease activity by 50%, 116% and 149%, respectively. On the other hand, dehydrogenase and protease activities were higher for the application rate of 2.5% biochar. Biochar amendment promoted tomatoes seedling growth after 10 weeks, which was highest in the application rates of 2.5% and 5% for both OMSW-B and I-OSMW-B. Thus, the produced biochars had great potential to be used as biofertilizers in agriculture.


Assuntos
Solo , Solanum lycopersicum , Agricultura , Carvão Vegetal
11.
Sci Total Environ ; 752: 141713, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32892041

RESUMO

Olive mill wastewater (OMW) is nowadays considered as a serious source pollution. At the same time, it contains high amounts of nutrients, especially potassium and phosphorus that could be recovered for agricultural purposes. The aim of the current experimental research work is to investigate the agronomic potential use of OMW based biochar produced from the slow pyrolysis at 500 °C of raw cypress sawdust (CS) impregnated with OMW (ICS-OMW-B). In order to understand the contribution of OMW, two additional biochars were produced from raw cypress sawdust (RCS-B) and cypress sawdust pretreated with potassium chloride (ICS-K-B). Results indicated that RCS impregnation by OMW significantly improved the produced biochar's chemical properties, especially its nutrients contents. Furthermore, in comparison with the other biochars, ICS-OMW-B application as an organic fertilizer showed promising results in terms of produced fresh and dry masses, as well as potassium bioavailability as assessed in test experiments with ryegrass. For instance, the dry matter masses of the rye-grass treated with ICS-OMW-B were about 23, 34 and 50 wt% higher than the ones measured for the tests using RCS-B, ICS-K-B and synthetic K-fertilizer as amendments, respectively. Besides, this biochar has a potential effect on the suppression of various pathogens existing in the tested agricultural soil. All these results demonstrated that the biochar generated from the slow pyrolysis of impregnated sawdust with OMW could be considered as attractive and promising organic fertilizer for acidic agricultural soils.


Assuntos
Cupressus , Olea , Carvão Vegetal , Resíduos Industriais/análise , Azeite de Oliva , Solo , Águas Residuárias
12.
Environ Sci Pollut Res Int ; 28(19): 24470-24485, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32337671

RESUMO

This research investigation proposes a new method for sustainable olive mill wastewater (OMW) treatment and handling. It is based on the combination of its impregnation onto raw cypress sawdust (RCS) followed by electrocoagulation. The retention of OMW compounds onto various RCS doses show an important decrease of its chemical oxygen demand (COD) and its main cation and anion content. The maximum retention efficiencies of COD, Na+, K+, Ca2+, Mg2+, Cl-, [Formula: see text], and [Formula: see text] were about 51.0%, 75.3%, 28.7%, 77.9%, 84.7%, 41.1%, 98.3%, and 90.9%, respectively, for the highest RCS dose (200 g L-1). This organic matter- and nutrient-loaded biomass could be thermochemically converted through pyrolysis into biofuel and biochar for energetic and agronomic purposes, respectively. The treatment by electrocoagulation of the pre-treated OMW using mild steel electrodes could be considered an attractive treatment method since 75.6% of COD removal efficiency was achieved. Besides, this approach permits a significant energy consumption reduction by 46% as compared with the electrocoagulation process alone. It allows also a significant improvement of the treated effluent quality in terms of both organic and mineral contents that could be reused for the irrigation of olive trees in the context of circular economy.


Assuntos
Cupressus , Olea , Eletrocoagulação , Resíduos Industriais/análise , Azeite de Oliva , Eliminação de Resíduos Líquidos , Águas Residuárias
13.
Sci Total Environ ; 733: 139314, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32446075

RESUMO

Hydrothermal carbonization (HTC) is considered as a promising technique for wastes conversion into carbon rich materials for various energetic, environmental and agricultural applications. In this work, the HTC of olive mill wastewater (OMWW) was investigated at different temperatures (180-220 °C) and both, the solid (i.e., hydrochars) and the final process liquid derived from the thermal conversion process were deeply analyzed. Results showed that the solid yield was affected by the temperature, i.e., decrease from 57% to 25% for temperatures of 180 °C and 220 °C, respectively. Furthermore, the hydrochars presented an increasing fixed carbon percentage with the increase of the carbonization temperature, suggesting that decarboxylation is the main reaction driving the HTC process. The decrease in the O/C ratio promoted an increase of the high heating value (HHV) by 32% for hydrochar prepared at 220 °C. The process liquids were sampled and their organic contents were analyzed using GC-MS technique. Acids, alcohols, phenols and sugar derivatives were detected and their concentrations varied with carbonization temperatures. The assessment of the physico-chemical properties of the generated HTC by-products suggested the possible application of the hydrochars for energetic insights while the liquid fraction could be practical for in agricultural field.


Assuntos
Poluentes Ambientais , Olea , Carbono , Fertilizantes , Temperatura , Águas Residuárias , Água
14.
Environ Sci Pollut Res Int ; 26(35): 35435-35444, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30989599

RESUMO

This paper aims to set up viable units of thermal processing of numerous agricultural wastes in a sustainable development and eco-friendly approach that could create new economic profitable circuits in an increasingly competitive context. One of the most problematic food wastes are tomato processing by-products; concentrating and canning industrial activities generate important amounts of them, particularly in the Tunisian context. As no reference was found in literature dealing with these last residues, this work intended to explore their potential as biomass fuels. Pyrolysis is then applied in thermogravimetric conditions for different heating rates (5, 10, 20, and 30 °C/min) in order to recover energy on one hand and to extract the corresponding kinetic parameters for an accurate design of reactors on the other hand. Main results include suitability of the tomato residues to a thermal valorization thanks to high contents of volatiles and fixed carbon and low ash percentage as well as an interesting heating value comparable to lignocellulosic biomass. Mass loss profiles indicate consecutive and overlapping stages of drying, active pyrolysis, and passive pyrolysis. The experimental profiles of conversion rate were well fitted by the three isoconversional methods; the best fitting is recorded by the Flynn-Wall-Ozawa associated with a first-order model for the intermediate pyrolysis and with a contracted sphere (n = 1/3) for the slowest studied pyrolysis.


Assuntos
Solanum lycopersicum/química , Termogravimetria/métodos , Agricultura , Biomassa , Calefação , Cinética , Pirólise , Tunísia
15.
Materials (Basel) ; 12(8)2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30995768

RESUMO

Transition metal hexacyanoferrate/microporous activated carbon composites were obtained using a simple successive impregnation approach. The effect of metal type (nickel, indium, or copper), and the carbon oxidation on the composite characteristics (porosity, metal structure, and particle size), as well as on the removal efficiency of cesium from aqueous solution was investigated. Successful formation of the desired metal hexacyanoferrate phase was achieved and the size of the metallic nanoparticles and their dispersion in the carbon network was found to depend on the metal type, with the indium and nickel-based materials exhibiting the smallest particle size distribution (< 10 nm). Adsorption tests performed under batch conditions demonstrate that the copper hexacyanoferrate/activated carbon composite present the highest cesium removal capacity from aqueous solution (74.7 mg·g-1) among the three studied metal-based nanocomposites. The carbon oxidation treatment leads to the increase in the number of functional groups to the detriment of the porosity but allows for an improvement in the Cs adsorption capacity. This indicates that the Cs adsorption process is governed by the carbon surface chemistry and not its porosity. Moreover, combining oxidized carbon support with copper hexacyanoferrate induces the highest cesium adsorption capacity (101.5 mg·g-1). This could be related to synergistic effects through two absorption mechanisms, i.e., a cation exchange mechanism of Cs with the metallic hexacyanoferrate phase and Cs adsorption via carbon oxygen surface groups, as demonstrated using X-ray photoelectron spectroscopy (XPS) analyses.

16.
Materials (Basel) ; 12(4)2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30781741

RESUMO

This paper is part of a sustainable development approach, the aim being to develop a thermochemical energy recovery path while reducing the amount of tomato waste issued from agro-industrial units. The thermal process may contribute to an environmentally friendly management and help tomato processing industries creating new economic profitable circuits in an increasingly competitive context. The adopted approach was to follow the operating conditions needed for a complete thermal degradation through a thermal and kinetic analyses. The results of the tomato waste characterization confirmed their suitability to a thermochemical processing with high volatiles and fixed carbon and interesting high heating values comparable to sawdust biomass. We were able to isolate of the decomposition domains and extract kinetic parameters. Three kinetic models were applied; Flynn⁻Wall⁻Ozawa (FWO) simulated the best the combustion process. Calculated curves were validated by the first order (n = 1) model except for the slow heating rate of 5 °C/min which was fitted by the contracted cylinder model. The conclusions of this paper could help in optimizing the combustion process in order to achieve high energy recovery from tomato residues. Obtained kinetic data would help in the design of combustion reactors.

17.
Materials (Basel) ; 12(3)2019 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-30682806

RESUMO

The present paper aims to develop a low cost, efficient, and environmentally-friendly process to purify (industrial) waters contaminated by copper by the use of oil mill wastes, through kinetic, thermodynamic, and equilibrium investigations. To do so, the raw adsorbent was characterized using different analytical techniques including X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Then, the interaction between copper and olive residues were examined during batch adsorption tests at various operating parameters, such as pH, initial concentration, contact time, and particle size. Kinetic data were best fitted with Broeurs-Sotolongo kinetic model. Additionally, it was found that film and intraparticle diffusion steps controlled simultaneously the mass transfer of copper onto olive mill solid waste. Among the eight tested models, Broeurs-Sotolongo isotherm suited the most the sorption, with regards to the function errors analysis. It was deduced that the adsorption of copper does not involve chemical bonds with high energy which allows easier regeneration steps and higher number of biosorbent regeneration cycles without any need for applying high temperature in the desorption reaction systems. The adsorption capacity (18.93 mg/g) calculated on the basis of this model was close to the experimental value (18.4 mg/g) but more interestingly it brought up that 50% of the generated amounts of olive wastes in Tunisia could eliminate 1.84 kTons of copper from industrial waters.

18.
Materials (Basel) ; 11(4)2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29670008

RESUMO

The textural properties and surface chemistry of different activated carbons, prepared by the chemical activation of olive stones, have been investigated in order to gain insight on the NO2 adsorption mechanism. The parent chemical activated carbon was prepared by the impregnation of olive stones in phosphoric acid followed by thermal carbonization. Then, the textural properties and surface chemistry were modified by chemical treatments including nitric acid, sodium hydroxide and/or a thermal treatment at 900 °C. The main properties of the parent and modified activated carbons were analyzed by N2-adsorption, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) techniques, in order to enlighten the modifications issued from the chemical and thermal treatments. The NO2 adsorption capacities of the different activated carbons were measured in fixed bed experiments under 500 ppmv NO2 concentrations at room temperature. Temperature programmed desorption (TPD) was applied after adsorption tests in order to quantify the amount of the physisorbed and chemisorbed NO2. The obtained results showed that the development of microporosity, the presence of oxygen-free sites, and the presence of basic surface groups are key factors for the efficient adsorption of NO2.

19.
J Environ Manage ; 216: 305-314, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28648547

RESUMO

The ability of biochars, derived from the pyrolysis at 400 °C; 500 °C and 600 °C of pretreated cypress sawdust with 20 wt% magnesium chloride (MgCl2) solutions, in recovering phosphorus from aqueous solutions was investigated under various experimental conditions in batch mode. The experimental results indicated that cypress sawdust pretreatment with MgCl2 induced important modifications of the physical and chemical biochars' properties favoring phosphorus recovery from the used synthetic solutions. Moreover, phosphorus recovery efficiency increased with the increase of the used pyrolysis temperature. Indeed, for an aqueous pH of 5.2 and a phosphorus concentration of 75 mg L-1, the recovered amounts increased from 19.2 mg g-1 to 33.8 mg g-1 when the used pyrolysis temperature was raised from 400 °C to 600 °C. For all the tested biochars, the phosphorus recovery kinetics data were well fitted by the pseudo-second-order model, and the equilibrium state was obtained after 180 min of contact time. Furthermore, the phosphorus recovery data at equilibrium were well described by the Langmuir model with a maximal recovery capacity of 66.7 mg g-1 for the magnesium pretreated biochar at 600 °C. Phosphorus recovery by the used biochars occurred probably through adsorption onto biochars' active sites as well as precipitation with magnesium ions as magnesium phosphates components. All these results suggested that biochars derived from MgCl2 pretreated cypress sawdust could be considered as promising materials for phosphorus recovery from wastewaters for a possible further subsequent use in agriculture as amendments.


Assuntos
Carvão Vegetal , Fósforo/isolamento & purificação , Adsorção , Cupressus , Magnésio , Soluções
20.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...